TRANSFORMATION OF THE EQUATIONS OF THERMODYNAMICS

D. P. Kolodnyi UDC 536.70

A simplified method is proposed and studied for deriving the equations of thermodynamics
through automatic conversion (transformation) of an equation into a series of other equations
through a replacement of variables on the basis of appropriate codes.

A large majority of the equations of thermodynamics, in particular, a large group of differential equa-
tions, can be formally derived from a small number of basic equations: the first and second laws of ther-
modynamics and equations defining the thermodynamic functions. Rows 1-5 in Table 4 show the basic equa~-
tions, which relate the basic state functions P, V, T, S, U, I, F, and & with the process functions L, @Q,

L', and Q'.

The basic equations have certain formal properties, independent of their physical meaning; one such
property is that when the variables in any equation are replaced by other variables according to certain
recipes, this equation converts into another basic equation (or into itself). As a formal property, this vari-
able-replacement property leads to equations which are derivable from the basic equations, and it can be
used to abbreviate and simplify the derivation, discussion, and study of a large number of equations of ther-
modynamics., One equation can be converted into several others through an automatic replacement of vari-
ables. This conversion of one equation into another is a "transformation," and the recipe containing the
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TABLE 4, Check of the Codes on the Basis of the Basic Equations
of Thermodynamics

No,

Equations Codes '

Definition of the state functions

JF=U4 PV Fe=U—TS§ l O=F-Lpy O=7/-T8§ 0,114,62,357)1

Definition of the basic process functions

L'=L—A(PV) { Q' = Q— A(TS) 0,1,2,34,56,7)| 2

The same in frictionless processes

dL = pdv }dL':-Vdp‘ dQ = TdS {dQ':-SdT 0,211,314,56,7! 3

First law of thermodynamics

Q=AU +L ] Q=AI+L | @=AF+L [ Q =AD+ L il0,4/1,5/2,63,7l| 4

Combination of first and second laws

AU = TdS — pdv dl = TdS -+ VdP 0,4 | 1,5 || B
dF = — SdT' — PdV A = — SdT -+ Vdp 2,6 | 3,7

According to Code 1

Definition of supplementary functions

C = dQ/dT 0,1 6
n— — (V/P) {dP/dV) 0.1 ; 7
k= (31/0U) 0,1 | 8

Equation of state of an ideal gas

PV = RT ) 0.1 9

the various sets of variables is a "code," It is easy to see from Table 4 that correct results follow from
the codes {for the basic functions) in Table 1, where there is also a "zeroth™ code, containing a list of the
variables which can be replaced, In general there are eight equations, including the original equation, which
differ significantly in physical meaning, role, and range of application. In certain cases, the transforma-
tion does not alter the equation, or a transformation by means of two or more codes leads back to the same
eqguation,

Table 1 shows three sets of four variables, in each of which sets the upper variable can be specified
{taking signs into account) in four versions, since a simultaneous change of the gign in the pair P, Vor in
the pair T, 8 or in both pairs does not alter the basic equations or those derived from them, All versions
are equivalent in terms of the results of the transformation, so it is sufficient to use the sets in Table 1,
That these other versions are possible is important only for a clarification of the next point,

By transforming two or more times successively with the same code or different codes, we produce
a transformation according to a new code, which we can treat as the result of "combining” these other codes,
Table 2 shows the numbers of the codes which are combinations of two codes: first the code whose number
appears at the top of this table is used, and then the code whose number appears in the left column., We
see that combinations do not result in any codes other than the eight in Table 1, Although the version of
the code may be different, this fact (as was mentioned in the previous paragraph) does not affect the results
of the transformation. The result of combining codes sometimes dépend on the order of this combination
{e.g., codes 4 and 5). Successive use of codes 1, 2, 3, 4, or 7 leads to a "zeroth” code (in one of the ver-
sions), i.e., convertis any equation into itself, These codes are symmetric; i.e., two equations are con-
verted into each other, and some equations, symmetric in structure, convert into themselves,

Indices indicating that a given variable is held constant during a process or during a partial differen~
tiation and processes including cycles can also be transformed (without an account of signs), However,
transfer of the role played by the original equation to the equation resulting from the transformation may be
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TABLE 5, Examples of the Transformation of Thermodynamic
Equations by Means of All the Codes

Equation ]’ Codes No.
Consequences of the first law of thermodynamics
ForL=0|Q=AU |@ = AF| FOIL’—:.O!Q:AI lo=a0oj2|1]s 1
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Differential equations of thermodynamics
(©U/P)y = — T (GV/3T) p ~ P (OV/OP) 1 0
(01/3V)y = T (OP[AT)y, -V (@P/OV) f 1
(OF/3P)g = — S (9V/38) p — P (AV/OP)g 2
{3D}0V)g = S (9P/aS)y, -+ V (dPj3V)g 3 i
(0U/3T)p == P (35/0P)p -+ T (3S/9T) p 4
(@1/0T)y =V (3S/3V)y -+ T (0S/0T),, 5
(0F/3S)p = — P (9T/3P)g — S (9T/2S) p 6
(0®/3S),, = — V (8T/aV) g — S (3T/38)y, 7
(0S/0V) ; = (@P/OT), (@S/8P) g = — (@V/0T) p 07 | 1,6
(T/aV)g = — (8PJaS)y (3T/aP)g = (3V/3S)p 2,5 | 34 || 12
U= F—T @FT)y, 1= ®—T (/3T p 0 1
F=U—8{QUS), © =1 — S {(31/aS)p 2 3
U= — P (9i/0P)g 1=U—V @) s s 18
F =0 — P (00/3P) @ = F— V(3F/aV) 6 7
U=®—T @0/oT)p — P (0D/3P)y L 04
[=F—T (QF/dT), —V (@F/3V)y 1,5
F=1-—-8(@4/3S)p — P (31/0P)g 2,6 1
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(@U/asy) , = (BT/3S)y (021/08%) p = (97/9S) p 0 1
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erroneous; e.g., a Carnot cycle is transformed by code 4 into an isochore—isobar cycle, but the role of
the Carnot cycle is not transferred to the latter cycle,

On the other hand, transformation can bring out new physical relations and new quantities, whose
physical meaning and roles should be studied separately, Although nearly all the variables and equations
used here are known [1-4], including L' [5], formal transformation led to the new variable Q' = Q — A(TS),
which, by analogy with the free energy and free enthalpy [1], can be called the "free heat" and treated as
part of the heat expended on a change in the free energy (in addition to the energy converted into work),
The role of this variable and its possible applications in calculations should be studied separately, New

variables may appear during transformation of supplementary functions, e.g., the heat capacity, by means
of various codes.

Code 1 is slightly more important than the others, since it can also be used for the equation of state
of an ideal gas and thus for all equations which follow from the ideal-gas equation (and from the basic equa-
tions). Table 3 shows for code 1 the method of replacingthe "supplementary" variables C, R, n, k. Where
necessary, the table can be fleshed out with thermal coefficients, Joule coefficients, or variables charac-
terizing polytropic processes [6].

The equations of state for real gases and the equations derived from them, equations involving the
discharge of material, and certain other equations cannot be transformed by this method,
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TABLE 6. Examples of the Transformation of Thermodynamic
Equations by Code 1 (basic and supplementary)

Equations No.

Differential equation of thermodynamics

i
5
€, = (@QUJT), Cp =115 (!— 18
Cy = T (95/27), -  Cp =T @ST)p w 17
!
(8C, J3T)y == (/8T {(0C, /8Ty p = (321107 p ‘f 18
(3Cy JV) p = T (@P/6T?), (9C, JP); = —T (V)3T “ 19
|
(@U/aVeyg = kPIV (H/0PY) g = —V/(kP) h 20
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Equations referring to a polytropic process

i B i
hev) = Lsymm.) e =0 l ijny =0 if{ k=ny Cp /Cy(symm,) ||24, 25, 26

ngy = ng {1 — @T/aV), (@V/oT)p ] } ny = ny /{1 — (T/3P); (@P/T)y ] 97

Equations refering to an ideal gas (the equations are denoted to show
their relationship with those above),

@S/V); = RIP l (@8/6P)p = — R}V J 121
Cp —Cy = R (symm.) 1 2t
np =1 (symm.) l E=Cp/Cy (symm.) %%z. 26i
ny =1 np=1 } 271
Equations referring to an ideal gas with constant Cy;
For S == const PV* = const (symim, } 281
£l
For S == const TV2-1 = const T/P ® = const 291
For n = const ne=(Cp—Cp )/ (Cp—Cy ) (symm, ) 301

Tables 5 and 6 show illustrative transformations, Tables 4 and 5 show the basic notation for the equa-
tions, which is intended to bring out the essence of the transformation, All the equations which transform
into each other have the same number but different code numbers, corresponding to the codes used to ob-
tain them, The original equation (which could be any one of the group) is denoted by code 0, and an equation
obtained by means of two or more codes is denoted by two or more code numbers, In Table 6, which deals
only with code 1, the code numbers are nof shown, since all the equations are given in pairs by codes 0 and
1; if both codes lead to the same equation, the latter is symmetric ("symm,").

The number of examples could be greatly increased, since the number of egquations, especially differ-
ential equations, which can be treated is huge.® Many of these equations have been used for a long time,

*It is easy to show that the number of first-order partial derivatives which can be formed from the eight
state functions listed in the text is 8+7 -6 = 336; the number of second~order partial derivatives with respect
to a single variable is also 336; and the number of second-order partial derivatives with respect to fwo vari-
ables is 336 +0,5 = 168, The total of 840 partial derivatives leads to a huge number of possible differential
equations relating first- and second-order partial derivatives,
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hut most have not been used at all, This transformation method is proposed in order to abbreviate and
simplify the derivation of equations, but we must again caution the reader that this transformation is only
of a formal nature, For example, the thermal efficiency is transformed into the mechanical energy effi-
ciency by code 4, but it would be a mistake to conclude that the two efficiencies play equivalent roles in
evaluating thermodynamic cycles [7],

Transformation of the equations of thermodynamics offers a shorter path for their formal derivation
from the basic equations; because of the particular structure of these basic equations, this transformation
procedure is peculiar to thermodynamics,

NOTATION

C  is the heat capacity, J/deg;

F is the free energy, J;

1 is the enthalpy, J;

K is the ratio of specific heats;

L is the work, J;

Lt is the available work, J;

n is the polytropy index;

P is the pressure, N/m%

Q is the heat, J;

Q! is the free heat, J;

R is the universal gas constant, J/deg;

S is the entropy, J/deg;

T is the temperature, °K;

U is the internal energy, J;

V  is the volume, mS;

® is the thermodynamic potential (or free enthalpy), J. Additive quantities can be attributed to the en-
tire system (in which case they have the dimensionality indicated above), to 1 mole, or to 1 kg of the
working medium, In the latter case (except for R), they are usually represented by lower case let-
ters in the literature. ’
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